123آنلاین
آنلاین دانلود

چکیده
دسترسی چندگانه تقسیم کد از تکنولوژی طیف گسترده به وجود می آید . سیستم های طیف گسترده در حین عمل کردن حداقل تداخل خارجی ، چگالی طیفی کم و فراهم کرده توانایی دسترسی چندگانه از تداخل عمدی سیگنالها جلوگیری می کند که عملیات سیستمی با تداخل دسترسی چندگانه و نویز آنالیز می شود . احتمال خطای بیت در مقابل تعداد متنوعی از کاربران و سیگنال به نویز  متفاوت محاسبه می شود . در سیستم دسترسی چندگانه تقسیم کد برای گسترده کردن به دنباله تصادفی با معیارهای کیفیت اصلی برای تصادفی کردن نیاز داریم . سیگنال گسترده شده بوسیله ضرب کد با شکل موج چیپ تولید می-شود و کد گسترده بوجود می¬آید .
بوسیله نسبت دادن دنباله کد متفاوت به هر کاربر ، اجازه می¬دهیم که همه کاربران برای تقسیم کانال فرکانس یکسان به طور همزمان عمل کنند . اگرچه یک تقریب عمود اعمال شده بر دنباله کد برای عملکرد قابل قبولی به کار می¬رود . بنابراین ، سیگنال کاربران دیگر به عنوان نویز تصادفی بعضی سیگنال کاربران دیگر ظاهر می¬شود که این تداخل دستیابی چندگانه نامیده می¬شود . تداخل دستیابی چندگانه تنزل در سرعت خطای بیت و عملکرد سیستم را باعث می¬شود .

فهرست مطالب

فصل اول : پیش نیازهای ریاضی و تعاریف ………………………………………………………………………………………………………. ۱

۱-۱ مقدمه …………………………………………………………………………………………………………………………………………………………. ۲

۱-۲ تعا ریف ………………………………………………………………………………………………………………………………………………………. ۳

۱-۲-۱ تابع همبستگی متقابل برای سیگنالهای پریودیک ……………………………………………………………………………… ۳

۱-۲-۲ تابع خود همبستگی برای سیگنالهای پریودیک …………………………………………………………………………………. ۴

۱-۲-۳ خواص توابع همبستگی پریودیک گسسته …………………………………………………………………………………………. ۵

۱-۳ نامساوی ولچ ………………………………………………………………………………………………………………………………………………. ۶

۱-۴ نامساوی سید لینکوف ………………………………………………………………………………………………………………………………. ۶

۱-۵ تابع همبستگی غیر پریودیک گسسته …………………………………………………………………………………………………….. ۷

فصل دوم : معرفی کدهای ماکزیمال و گلد و کازامی ……………………………………………………………………………………… ۸

۲-۱ مقدمه ………………………………………………………………………………………………………………………………………………………… ۹

۲-۲ تعریف ……………………………………………………………………………………………………………………………………………………… ۱۰

۲-۳ دنباله­های کلاسیک ………………………………………………………………………………………………………………………………… ۱۰

۲-۳-۱ دنباله­هایی با طول ماکزیمال ……………………………………………………………………………………………………………… ۱۰

۲-۳-۲ خواص دنباله­های ماکزیمال ……………………………………………………………………………………………………………….. ۱۱

۲-۴ انواع تکنیکهای باند وسیع ……………………………………………………………………………………………………………………… ۱۳

۲-۴-۱ روش دنباله مستقیم (DS) ……………………………………………………………………………………………………………….. 13

2-5 کدPN  ……………………………………………………………………………………………………………………………………………………. ۱۴

 

۲-۵-۱ دنباله PN و پس خور ثبات انتقالی ………………………………………………………………………………………………….. ۱۵

۲-۵-۲ مجموعه دنباله­های ماکزیمال دارای همبستگی ناچیز ……………………………………………………………………… ۱۶

۲-۵-۳ بزرگترین مجموعه به هم پیوسته از دنباله­های ماکزیمال ……………………………………………………………….. ۱۷

۲-۶ دنباله گلد ………………………………………………………………………………………………………………………………………………… ۱۹

۲-۷ مجموعه کوچک رشته­های کازامی ………………………………………………………………………………………………………… ۲۰

۲-۸ مجموعه بزرگ رشته­های کازامی …………………………………………………………………………………………………………… ۲۱

فصل سوم : نحوه­ی تولید کدهای ماکزیمال و گلد و کازامی ……………………………………………………………………….. ۲۲

۳-۱ تولید کد ماکزیمال …………………………………………………………………………………………………………………………………. ۲۳

۳-۲ تولید کد گلد ………………………………………………………………………………………………………………………………………….. ۲۸

۳-۳ تولید کد کازامی …………………………………………………………………………………………………………………………………….. ۳۲

فصل چهارم : مروری بر سیستمهای دستیابی چندگانه تقسیم کد ……………………………………………………………. ۳۶

۴-۱ مقدمه ……………………………………………………………………………………………………………………………………………………… ۳۷

۴-۲ سیستمهای دستیابی چندگانه تقسیم کد …………………………………………………………………………………………… ۳۸

۴-۳ مزایای سیستمهای دستیابی چندگانه تقسیم کد ………………………………………………………………………………. ۴۰

۴-۴ نگاهی به مخابرات سیار ………………………………………………………………………………………………………………………… ۴۱

۴-۵ طریقه­ی مدولاسیون ……………………………………………………………………………………………………………………………… ۴۶

۴-۶ پدیده دور- نزدیک ………………………………………………………………………………………………………………………………… ۴۶

۴-۷ استفاده از شکل موجهای مناسب CDMA ………………………………………………………………………………………… 49

4-8 بررسی مساله­ی تداخل بین کاربران ……………………………………………………………………………………………………. ۴۹

 

فصل پنجم : مراحل و نتایج شبیه سازی ……………………………………………………………………………………………………. ۵۰

۵-۱ مقدمه ……………………………………………………………………………………………………………………………………………………. ۵۱

۵-۲ بررسی کد ماکزیمال در شبیه سازی …………………………………………………………………………………………………. ۵۲

۵-۳ بررسی کد گلد در شبیه سازی ………………………………………………………………………………………………………….. ۵۷

۵-۴ بررسی کد کازامی در شبیه سازی …………………………………………………………………………………………………….. ۶۲

۵-۵ عملکرد خطای بیت …………………………………………………………………………………………………………………………….. ۶۶

 

شکلها

شکل (۱-۱) شکل موج گسترش یافته ……………………………………………………………………………………………………………….. ۵

شکل (۱-۲) مدار شیفت رجیستر …………………………………………………………………………………………………………………….. ۱۱

شکل (۲-۲) بلوک دیاگرام یک سیستم DSSS ……………………………………………………………………………………………….. 14

شکل (۲-۳) بلوک دیاگرام یک فیدبک شیفت رجیستر ……………………………………………………………………………………… ۱۶

شکل (۳-۱) چگونگی ترکیب کد ماکزیمال با داده ها ………………………………………………………………………………………… ۲۳

شکل (۳-۲) تولید کد ماکزیمال با استفاده از شیفت رجیستر ……………………………………………………………………………. ۲۴

شکل (۳-۳) تابع همبستگی کد ماکزیمال ……………………………………………………………………………………………………….. ۲۵

شکل (۳-۴) تابع همبستگی متقابل با طول دنباله۳۱ و تعداد ۱۰۰ کاربر …………………………………………………………. ۲۶

شکل (۳-۵) تابع همبستگی متقابل با طول دنباله۶۳ و تعداد ۱۰۰ کاربر …………………………………………………………. ۲۷

شکل (۳-۶) نحوه­ی تولید کد گلد ……………………………………………………………………………………………………………………. ۲۸

شکل (۳-۷) تابع خود همبستگی و همبستگی متقابل با طول دنباله ۳۱ و تعداد ۵۰ کاربر ………………………………… ۲۹

شکل (۳-۸) تابع خود همبستگی و همبستگی متقابل با طول دنباله ۳۱ و تعداد ۱۰۰ کاربر …………………………….. ۳۰

شکل (۳-۹) تابع خود همبستگی و همبستگی متقابل با طول دنباله ۶۳ و تعداد ۵۰ کاربر ……………………………….. ۳۱

شکل (۳-۱۰) نحوه­ی تولید کد کازامی ……………………………………………………………………………………………………………. ۳۲

شکل (۳-۱۱) تابع خود همبستگی و همبستگی متقابل با طول دنباله ۳۱ و k=2 , m=-1 …………………………… 33

شکل (۳-۱۲) تابع خود همبستگی و همبستگی متقابل با طول دنباله ۳۱ و k=-1 , m=10 ………………………… 34

شکل (۳-۱۳) تابع خود همبستگی و همبستگی متقابل با طول دنباله ۳۱ و k=-4 , m=4 ……………………………. 35

شکل (۴-۱) مدل سیستم دستیابی چندگانه تقسیم کد …………………………………………………………………………………… ۳۸

شکل (۴-۲) تقسیم بندی سیستم دستیابی چندگانه تقسیم کد ………………………………………………………………………. ۳۹

شکل (۴-۳) هدف سیستم دستیابی چندگانه تقسیم کد ………………………………………………………………………………….. ۴۱

شکل (۴-۴) نمونه­ای از مخابرات سلولی …………………………………………………………………………………………………………… ۴۲

شکل ( ۴-۵) مدلهای مختلف سیستمهای چندگانه …………………………………………………………………………………………. ۴۵

شکل (۴-۶) اثر پدیده دور- نزدیک ………………………………………………………………………………………………………………….. ۴۷

شکل (۵-۱) فرستنده CDMA ……………………………………………………………………………………………………………………… 51

شکل (۵-۲) گیرنده CDMA ………………………………………………………………………………………………………………………… 52

شکل (۵-۳) سیگنال مدولاسیون BPSK همراه fft سیگنال برای ۴۰ کاربر ……………………………………………………. ۵۳

شکل (۵-۴) سیگنال CDMA همراه fft سیگنال برای ۴۰ کاربر ……………………………………………………………………. ۵۳

شکل (۵-۵) سیگنال غیر گسترش یافته در گیرنده همراه fft سیگنال برای ۴۰ کاربر ……………………………………….. ۵۳

شکل (۵-۶) سیگنال دمدولاسیون BPSK در گیرنده همراه fft سیگنال برای ۴۰ کاربر …………………………………… ۵۳

شکل (۵-۷) نمودار BER برای ۴۰ کاربر کد ماکزیمال …………………………………………………………………………………… ۵۴

شکل (۵-۸) سیگنال مدولاسیون BPSK همراه fft سیگنال برای ۸۰ کاربر ……………………………………………………. ۵۵

شکل (۵-۹) سیگنال CDMA همراه fft سیگنال برای ۸۰ کاربر …………………………………………………………………… ۵۵

شکل (۵-۱۰) سیگنال غیر گسترش یافته در گیرنده همراه fft سیگنال برای ۸۰ کاربر …………………………………….. ۵۵

شکل (۵-۱۱) سیگنال دمدولاسیون BPSK در گیرنده همراه fft سیگنال برای ۸۰ کاربر ……………………………….. ۵۵

شکل (۵-۱۲) نمودار BER برای ۸۰ کاربر کد ماکزیمال ……………………………………………………………………………….. ۵۶

شکل (۵-۱۳) روش بدست آوردن کد گلد ………………………………………………………………………………………………………. ۵۷

شکل (۵-۱۴) سیگنال مدولاسیون BPSK همراه fft سیگنال برای ۴۰ کاربر …………………………………………………. ۵۸

شکل (۵-۱۵) سیگنال CDMA همراه fft سیگنال برای ۴۰ کاربر …………………………………………………………………. ۵۸

شکل (۵-۱۶) سیگنال غیر گسترش یافته در گیرنده همراه fft سیگنال برای ۴۰ کاربر ……………………………………… ۵۸

شکل (۵-۱۷) سیگنال دمدولاسیون BPSK در گیرنده همراه fft سیگنال برای ۴۰ کاربر ………………………………… ۵۸

شکل (۵-۱۸) نمودار BER برای ۴۰ کاربر کد گلد …………………………………………………………………………………………. ۵۹

شکل (۵-۱۹) سیگنال مدولاسیون BPSK همراه fft سیگنال برای ۸۰ کاربر …………………………………………………. ۶۰

شکل (۵-۲۰) سیگنال CDMA همراه fft سیگنال برای ۸۰ کاربر …………………………………………………………………. ۶۰

شکل (۵-۲۱) سیگنال غیر گسترش یافته در گیرنده همراه fft سیگنال برای ۸۰ کاربر ……………………………………… ۶۰

شکل (۵-۲۲) سیگنال دمدولاسیون BPSK در گیرنده همراه fft سیگنال برای ۸۰ کاربر …………………………………. ۶۰

شکل (۵-۲۳) نمودار BER برای ۸۰ کاربر کد گلد ………………………………………………………………………………………….. ۶۱

شکل (۵-۲۴) سیگنال مدولاسیون BPSK همراه fft سیگنال برای ۴۰ کاربر ………………………………………………….. ۶۲

شکل (۵-۲۵) سیگنال CDMA همراه fft سیگنال برای ۴۰ کاربر ………………………………………………………………….. ۶۲

شکل (۵-۲۶) سیگنال غیر گسترش یافته در گیرنده همراه fft سیگنال برای ۴۰ کاربر ………………………………………. ۶۲

شکل (۵-۲۷) سیگنال دمدولاسیون BPSK در گیرنده همراه fft سیگنال برای ۴۰ کاربر …………………………………. ۶۲

شکل (۵-۲۸) نمودار BER برای ۴۰ کاربر کد کازامی ……………………………………………………………………………………… ۶۳

شکل (۵-۲۹) سیگنال مدولاسیون BPSK همراه fft سیگنال برای ۸۰ کاربر …………………………………………………… ۶۴

شکل (۵-۳۰) سیگنال CDMA همراه fft سیگنال برای ۸۰ کاربر ………………………………………………………………….. ۶۴

شکل (۵-۳۱) سیگنال غیر گسترش یافته در گیرنده همراه fft سیگنال برای ۸۰ کاربر ……………………………………… ۶۴

شکل (۵-۳۲) سیگنال دمدولاسیون BPSK در گیرنده همراه fft سیگنال برای ۸۰ کاربر …………………………………. ۶۴

شکل (۵-۳۳) نمودار BER برای ۸۰ کاربر کد کازامی …………………………………………………………………………………….. ۶۵

شکل (۵-۳۴) مقایسه سه کاربر برای کد ماکزیمال …………………………………………………………………………………………… ۶۸

شکل (۵-۳۵) مقایسه سه کاربر برای کد گلد …………………………………………………………………………………………………… ۶۹

شکل (۵-۳۶) مقایسه سه کاربر برای کد کازامی ……………………………………………………………………………………………… ۷۰

شکل (۵-۳۷) مقایسه سه کد برای ۴۰ کاربر ………………………………………………………………………………………………….. ۷۱

شکل (۵-۳۸) مقایسه سه کد برای ۸۰ کاربر ………………………………………………………………………………………………….. ۷۲

جدول (۲-۱) مقدیری از دنباله­های ماکزیمال …………………………………………………………………………………………………. ۱۸

فهرست مراجع

[۱] R.L Peterson , R.E Zimer and D.E Borth , introduction to spread spectrum communications , prentice hall 1995.

[2] S.Glisic and B.Vucetio , spread spectrum CDMA systems for wirless communication , Altech , Nor Wood , MA , 1997.

[3] الکس ، وبلیوم و ساواسه تانتارانتا . مترجم : دکتر محمد ابطحی . تئوری و کاربرد سیستم­های طیف گسترده . موسسه فرمبنایی نص .

[۴] E.J,Groth , “Generation of binary sequence with controllable complexity” , IEEE Trans , inf . Teory , Vol . IT-17 . no.3 , p.p.288-269, May 1971.

[5] S.W.Golomb , shift register sequence , revised ED , Langune Hills , CA : Aegean park press , 1982.

[6] C.P.Pfleeger , Security in coputing , Englewood cliffs , Nj : prentice Hall , 1989.

دانلود فایل





ارسال توسط ودود
آخرین مطالب

صفحه قبل 1 2 3 4 5 ... 144 صفحه بعد